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Abstract. We have localized several few-body resonances in light nuclei, using
methods which can properly handle two- or three-body resonant states. Among
other results, we predict the existence of a three-neutron resonance, small spin-
orbit splittings between the low-lying states in 5He and 5Li, the nonexistence of
the soft dipole resonance in 6He, new 1+ states in 8Li and 8B, and the presence
of a nonlinear amplification phenomenon in the 0+

2 state of 12C.

1 Introduction

In the past few years our theoretical understanding of the structure and reac-
tions of light nuclei has been greatly improved, thanks to new and powerful
methods and to the tremendous advances in computing power. Currently it
is possible to solve the bound-state problems of A ≤ 8 nuclei, using realistic
two-body and three-body nucleon-nucleon (N-N) interactions, in a numerically
exact way [1]. The scattering problem is more difficult to deal with. So far only
the A = 3 systems can be treated with the same high precision as the bound
states [2]. However, most of the states in light nuclei are unbound resonances.
As the most elaborate models cannot treat these systems correctly for the time
being, one can describe them either by using methods which are unphysical at
some level, or by treating the most important degrees of freedom properly. We
present here some of our recent results achieved by following the second strat-
egy [3–12]. We concentrate mainly on the physics motivations and the most
interesting results. Further details can be found in the original papers.

2 Model

We use a microscopic cluster model (RGM) description of nuclei, and apply
this model to systems whose wave functions contain two- or three-cluster con-
figurations with large weight. This ensures that those few degrees of freedom
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(the one or two relative motions between the clusters) which can be treated
properly, are really the most important properties in the problems. The wave
functions of the two- and three-cluster systems look like

Ψ =
∑

L,S

A

{[[
ΦAΦB

]

S
χL(ρ)

]

JM

}
(1)

and

Ψ =
∑

l1,l2,L,S

A

{[[
ΦAΦBΦC

]

S
χ[l1,l2]L(ρ1, ρ2)

]

JM

}
, (2)

respectively. Here A is the intercluster antisymmetrizer, the Φ cluster internal
states are translationally invariant 0s harmonic-oscillator shell-model states,
the ρ vectors are the intercluster relative coordinates, l1 and l2 are the angular
momenta of the two relative motions, L is the total orbital angular momentum,
S is the total intrinsic spin, and [ ] denotes angular momentum coupling. In the
case of three-cluster dynamics, all possible sets of relative coordinates [A(BC),
C(AB), B(AC)] and angular momentum couplings are included in (2).

Putting (1) or (2) into the N -body Schrödinger equation, we get equations
for the unknown relative motion functions χ. For two-body (three-body) bound
states they are expanded in terms of (products of) Gaussian functions, and
the expansion coefficients are determined from a variational principle for the
energy. For two-body scattering states the χ functions are expanded in terms of
Gaussian functions matched with the correct asymptotics, and the expansion
coefficients are determined from the Kohn-Hulthén variational method for the
S matrix [13].

In scattering theory resonances are defined as complex-energy solutions of
the Schrödinger equation that correspond to the poles of the S matrix (or
equivalently the zeros of the Fredholm determinant or Jost function). In order to
obtain these complex solutions, we implemented a direct analytic continuation
of the S matrix for two-cluster systems [7, 14], and the complex scaling method
for three-cluster systems [15].

For two-cluster systems we solve the Schrödinger equation for the relative
motion at complex energies with the boundary condition (ρ → ∞)

χ(ε, ρ) → H−(kρ) − S̃(ε)H+(kρ). (3)

Here ε and k are the complex energies and wave numbers of the relative mo-
tions, and H− and H+ are the incoming and outgoing Coulomb functions,
respectively. The function S̃ has no physical meaning, except if it is singular
at the energy ε. Then S̃ coincides with the physical S matrix, describing a
purely outgoing solution, that is a resonance. So we search for the poles of S̃
at complex energies and extract the resonance parameters from ε = Er − iΓ/2.

For the three-cluster systems we solve the eigenvalue problem of a new
Hamiltonian defined by

Ĥθ = Û(θ)ĤÛ−1(θ), (4)
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where Ĥ is the original many-body Hamiltonian and Û is the complex scaling
transformation which acts on a function f(r) as Û(θ)f(r) = e3iθ/2f(reiθ).
In the case of a multicluster system the transformation is performed on each
dynamical coordinate (relative motion). The solution of the complex-scaled
Schrödinger equation results in a spectrum with continuum cuts rotated by 2θ
relative to the real energy axis, plus possibly a few isolated complex points at
the resonant and bound state poles [15].

3 Resonances in A = 2− 12 Nuclei

We have used our model to study several selected resonances in d(= p+n), 3n(=
n+n+n), 3p(= p+p+p), 3H(= p+n+n), 3He(= p+p+n), 4He(= {t+p, h+n}),
5He(= α+n), 5Li(= α+p), 6He(= α+n+n), 6Li(= α+p+n), 6Be(= α+p+p),
8Li(= α + t + n), 8B(= α + h + p), and 12C(= α + α + α) [3]. Here α = 4He,
t = 3H, and h = 3He, and the cluster structures assumed in the model, are
indicated. In most cases we used the Minnesota (MN) effective N-N interaction
[16], which gives a reasonably good overall description of the low-energy N +N
scattering and the bulk properties of the 3H, 3He, and 4He clusters. In certain
cases the Eikemeier-Hackenbroich (EH), modified Hasegawa-Nagata (MHN),
or Volkov (V1 and V2) forces [17] were applied.

A=2: Our description of the virtual states in 3H and 3He (see below) requires
the good reproduction of the virtual states of the N + N systems in the 1S0

channel. We localized these states on the complex-energy plane for the EH
force by using the analytic continuation method [4]. In order to see how the
differences between a neutral (n + n) and a charged (p + p) two-body virtual
state develop, we first localized the n + n pole and then smoothly switched
on the Coulomb force. As one can see in Fig. 1, the presence of the Coulomb
force creates two poles from the single virtual state present in n+n, and moves
them into the complex plane. We note that in Ref. [4] our variational basis
was not sufficiently converged, leading to slightly incorrect pole positions. We
correct this error in Fig. 1. Our model gives the pole energies of the n + n
and p + p states as Enn = −0.121 MeV and Epp = (−0.143 ± i0.466) MeV,
in excellent agreement with the phenomenological values, Enn = −0.123 MeV
and Epp = (−0.140± i0.467) MeV [18]. Our interaction is charge independent,
leading to Enn = Enp, therefore it is unable to reproduce the phenomenological
Enp = −0.066 MeV value [18]. We would like to emphasize that, as Fig. 1 nicely
demonstrates it, a virtual state with pure imaginary wave number can exist only
in a neutral s-wave two-body system. The presence of a Coulomb-, centrifugal-,
or three-body barrier does not allow the appearance of an S-matrix pole on
the negative imaginary k axis.

A=3: The lightest nuclei where one could expect the existence of real reso-
nances with any experimental significance are the A = 3 systems. The 3n and
3p nuclei are easier to handle, because the 3S1 − 3D1 two-nucleon channel is
missing and there is no bound two-body subsystem present. We searched for
three-body resonances in the various partial waves using the MN interaction,
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Figure 1. Trajectories of the 1S0 N+N S-matrix poles. The open square corresponds

to the n + n and n + p poles, wile the open circles denote the pair of conjugate poles

in the p + p system. The filled circles come from calculations where c · V pp

Coul
is added

to the n + n interaction (0 < c < 1).

and found a Jπ = 3/2+ resonance in 3n with Er = 14 MeV and Γ = 13 MeV
parameters, while the mirror 3p system has Er = 15 MeV and Γ = 14 MeV
[5]. The EH interaction gives somewhat smaller resonance energies. We should
mention that some recent experiments did not see any evidence of these struc-
tures [19]. Thus, it would be highly desirable to repeat our calculations using
fully realistic forces. The first step in this direction has been made in Ref. [20].
So far those calculations could not be extended to the physical interactions,
but the pole trajectories show that it is really the 3/2+ partial wave where one
can expect a resonance, lying not very far from the real energy axis.

In 3H and 3He there are evidences for the existence of 1/2+ virtual states,
both theoretically [21] and experimentally [22]. However, to our knowledge, all
existing calculations so far were restricted to a simple configuration with a 1S0

dinucleon plus the third nucleon. We extended those works by taking into ac-
count some other important channels, most importantly the d+N configuration
with a 3S1−

3D1 deuteron. Our model, which works only below the three-body
breakup threshold, gives EV = −1.62 MeV and EV = (−0.43± i0.56) MeV for
the energies of the 1/2+ virtual states in 3H and 3He, respectively, using the
EH force [5]. As the ground states of these nuclei are underbound in our model
(due probably entirely to the lack of a three-body force), so are probably these
virtual states. This underbinding leads to a too large |EV | for 3H, and to 3He
states which lie too far from the imaginary k axis.

A=4: 4He is the lightest nucleus with a well-established system of reso-
nances. The first excited state, 0+

2 , which lies between the 3H + p and 3He + n
thresholds, is perhaps one of the most difficult resonances to localize in 4He.
Those approaches which cannot use correct boundary conditions in their wave
functions find this state several MeV above the 3+1 thresholds [23]. Our model
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reproduces the phenomenological 1S0 phase shift in 3H + p, which is the most
important quantity related to the 0+

2 resonance, rather well. We localize this
state at Er = 93 keV above the 3H +p threshold with Γ = 390 keV width, as a
conventional resonance [6]. This result inspired us to repeat the search for this
state in the so-called extended R-matrix-model description of the experimental
data, because in the original search the resonance was not found [24]. This time
we could find this state in the extended R-matrix model with Er = 114 keV
and Γ = 392 keV parameters, which are close to the RGM values.

A=5: The 5He and 5Li nuclei offer one of the cleanest and easiest testing
grounds for resonance methods. Both of these systems have very strong α + N
clustering nature, and there exist precise α+N scattering data. Still, there have
been much controversy in the past few years concerning the resonances of 5He
and 5Li. Shell models, for example, suggest the existence of low-lying positive
parity states, most notably 1/2+ resonances [23]. Furthermore, it appears that
the phenomenologically extracted spin-orbit splittings between the 3/2− and
1/2− states are so large that their theoretical reproduction is hopeless [25]. And,
in general, there seems to be big differences between the resonance parameters
coming from real-energy fits of certain reaction cross sections and those which
are required by, e.g., the halo studies of 6He.

Using our RGM model, we localized the low-lying 5He and 5Li states as
poles of the scattering matrices [7]. Our calculations show that no low-lying
1/2+ state of any experimental significance exists in these nuclei. Extremely
broad states (Γ ≫ 10 MeV) can be found of course [26], as in almost any two-
body system. However, they do not have any observable effect on the α + N
scattering. The calculated 3/2− and 1/2− resonance parameters are somewhat
different from those coming from conventional R-matrix analyses of the data
[27], especially for the broader resonances. However, if the R matrices coming
from the conventional data fit, are extended to complex energies, then we get
a good agreement with our RGM results [7]. This finding emphasizes the fact
that the correct treatment of the asymptotics in the analysis of experimental
data (e.g. through the extended R-matrix method) can substantially affect the
results of phenomenological analyses. Other calculations, using rather different
models and interactions, and treating the resonances properly, found resonance
parameters which are in excellent agreement with our results [28].

We should mention that the prediction of the 1/2+ state and other positive
parity states by the shell model nicely demonstrates that the use of incorrect
boundary conditions can lead to spurious states. In fact, if one could enlarge
the basis size in such models beyond any limit, then all their predicted states
(both the physical and spurious ones) would gradually move down to the lowest
breakup threshold. One could distinguish between the physical states and the
spurious ones by carefully analyzing their energy trajectories as functions of
the basis size. The physical resonances would show up as those which remain
stable for a relatively large interval of basis sizes [6, 26, 29].

A=6: Our main motivation of studying the resonances of the A = 6 nuclei
was to see if the predicted soft dipole state exists in the neutron-halo nucleus
6He. It was suggested that the oscillation of the halo neutrons against the 4He
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core in 6He would lead to a low-energy (a few MeV) dipole (1−) resonance
[30]. Break-up experiments performed on 6He (and also on 11Li) really indicate
low-lying bumps in the dipole cross sections [31, 32], which means that a con-
centration of the dipole strength is undoubtedly present in these systems. Its
origin is, however, questionable. Certain measurements show that these bumps
come from a direct break-up process and not from a long-lived dipole state [32].
The main difficulty in interpreting the results comes from the fact that the ex-
periments can see only a one-dimensional projection (on the real-energy axis) of
a complex multisheeted energy surface, corresponding to the three-body prob-
lem. Trying to find out from this one-dimensional image if the scattering matrix
has a 1− (relative to the ground state) pole or not, is really difficult. Theoret-
ically the situation is much easier, although those methods which are confined
to real energies (e.g. the conventional shell model) face the same difficulty as
the experimental analyses.

We searched for α + N + N resonances in 6He, 6Li, and 6Be by using the
complex scaling method in the cluster model [8]. We could find the experi-
mentally known states, but we did not see any evidence for the existence of
a 1− state in 6He. This result has been confirmed by other calculations using
rather different methods and forces [33]. We should mention that those works,
although do not see a 1− state, indicate the existence of several previously
unknown resonances in 6He, like 0+

2 and 1+. We believe that these new states
are real, although they do not show up in our model. It is possible that in our
microscopic model these states would all be rather broad, which could explain
why our method, which becomes unstable for broad states, cannot see them.

Recently, several rather narrow α + n + n resonances of 6He were reported
in each partial wave in Ref. [34]. This finding contradicts all previous works
which, if they found any new state at all, indicated only a few rather broad
new resonances. We believe that the Ref. [34] results are wrong and should be
seen as a warning sign that the localization of resonances through the S-matrix
poles, although a very powerful method, can generate false results if it is not
done properly [9]. In Fig. 2 we show the complex-energy positions of the first
four 1− poles found in the Ref. [34] work (note that the first paper of Ref. [34]
lists only the first two poles in each partial waves; the others can be found in
the second one). The distribution of these poles is clearly unphysical.

A=8: The 7Li(n, γ)8Li and 7Be(p, γ)8B reactions play important roles in
astrophysics. The first process takes place in certain inhomogeneous big-bang
nucleosynthesis models [35], while the second one makes 8B in the sun, which
produces the highest-energy solar neutrinos with substantial flux [36]. Although
astrophysically only the very low-energy (practically E = 0) cross sections are
important, these values can be substantially influenced by the higher-energy
continuum structures present in 8Li and 8B. For example, the extrapolation of
the astrophysical S factor S(E) of the 7Be(p, γ)8B reaction could be affected by
the existence of a second 1+ state at low energies [37]. With this motivation,
we searched for low-energy 1+ states in 8Li and 8B [10]. After tuning the
MHN force to precisely reproduce the known parameters of the 0.632-MeV 1+

state of 8B (relative to 7Be + p), we indeed found new 1+ states. In 8B it is
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Figure 2. Positions of the the first four poles of the Jπ = 1− α + n + n S matrix of

Ref. [34] on the complex-energy plane.

situated at Er = 1.28 MeV and has a Γ = 0.56 MeV width, while in 8Li it lies
right at the 7Li + n threshold. We would like to emphasize that so far there
is no experimental evidence which would support our results. Nevertheless,
given the important consequences of such states if they exist, we think that
further experimental and theoretical studies of these possible structures would
be desirable. One can see, e.g., that the presence of such a resonance would
really affect the extrapolation of the experimental S(E) of the 7Be(p, γ)8B
reaction from higher energies down to E = 0 [10].

A=12: Recently, we studied the low-lying 3α resonances of 12C [11]. We
were able to reproduce the known resonances, and we believe that for the first
time we showed that the 0+

2 state is a genuine three-alpha resonance of 12C.
This level plays an important role in astrophysics, as virtually all the carbon
in the Universe is synthesized through it [35]. But this 0+

2 resonance is inter-
esting for another reason, too. It possesses a rather curious feature, which we
call nonlinear quantum amplifying [12]. If we change the strength of the N-N
interaction by 0.1%, then the resonance energy of this state, relative to the 3α
threshold, changes a lot more, by almost 10%. One can study this response to
small perturbations also in other nuclei. It turns out that the relatively deeply
bound states give a response which is comparable in size to the perturbation.
However, as one moves close to the edge of stability, the effect of a small pertur-
bation can get enormously amplified in the energy. This effect is caused by the
fact that the residual interactions between the clusters, to which the nucleus
breaks up, go toward zero much more mildly than the binding or resonance
energy itself, as we go toward the break-up point.

This behavior is demonstrated in the case of the 0+
2 state of 12C in Fig.

3. We generated several artificial 0+
2 states by changing the strength of the

N-N force (multiplying all strength of the strong force by a number p). Then,
for each artificial state (represented by its binding/resonance energy and its
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Figure 3. The energy (B = |E|, where E is the binding energy or resonance energy,

relative to the breakup threshold), the response (R = |Ep − Ep×1.001|, where Ep and

Ep×1.001 are the binding energies or resonance energies corresponding to a given N-N

force and another one which is stronger by 0.1%, respectively), and the R/B ratio

calculated for several artificial 0+
2 states of 12C, as functions of the radius of the state.

The N-N interaction is chosen to be the MN force in each case, with the strengths

multiplied by a number p (see the text). The black dot shows the real physical 0+
2

state, given by our model.

radius) we calculated the response, that is the change of the binding/resonance
energy caused by a 0.1% increase in the N-N strength. As one can see in Fig. 3,
the response (which is closely related to the residual interaction) really behaves
very differently than the binding/resonance energy, as we approach the break-
up point. This naturally leads to the possibility of huge amplifications. We
believe that this phenomenon is a common feature of nuclei lying at the edge
of stability.

The strong sensitivity of the resonance energy of the 0+
2 state of 12C to

the N-N force has a spectacular consequence in astrophysical carbon synthesis.
Careful studies of all the details of the process show that a mere 0.5% change
in the strength of the N-N force would lead to a Universe where virtually no
carbon or oxygen exists [38]. This makes carbon production one of the most
fine-tuned processes in astrophysics, leading to interesting consequences for the
possible values of some fundamental parameters of the Standard Model [39].

4 Conclusions

We have presented selected examples of some interesting few-body resonances
in light nuclei. We believe that the investigation of these and other resonance
structures, using methods which can properly handle them, offers a rich source
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of information on many-body dynamics, nucleon-nucleon interaction, shell-
structure, etc.
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