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In nucleosynthesis three possible paths are known to bridge the mass gaps at A = 5 and
A = 8. The primary path producing the bulk of the carbon in our Universe proceeds via
the triple-alpha process 4He(2α,γ)12C. This process takes place in helium-burning of red
giant stars. We show that outside a narrow window of about 0.5% of the strength or range
of the strong force, the stellar production of carbon or oxygen through the triple-alpha
process is reduced by factors of 30 to 1000. Outside this small window the creation of
carbon or oxygen and therefore also carbon-based life in the universe is strongly disfavored.
The anthropically allowed strengths of the strong force also give severe constraints for the
sum of the light quark masses as well as the Higgs vacuum expectation value and mass
parameter at the 1% level.

1. INTRODUCTION

Few-body methods are used in nuclear astrophysics for the determination of thermonu-
clear cross sections and reaction rates predominantly for nuclei with mass numbers up to
about A = 12. These reactions are of relevance for primordial nucleosynthesis, i.e., the
production of nuclei up to A = 7 in standard Big-Bang model. In the inhomogeneous Big-
Bang nucleosynthesis model nuclei with A > 7 can also be produced. Few-body methods
play also a role in the determination of reaction rates for the pp-chains in main-sequence
stars up to A = 7 and helium burning from A = 4 to A = 12. Finally, in the alpha-rich
freeze-out occurring in supernovae, reaction rates for nuclei from A = 4 to A = 12 are
studied using few-body methods.

We want to discuss the bridging of the mass gaps at A = 5 and A = 8 in nucleosynthesis
through three-body reactions (Fig. 1). The following paths via three-body reactions can
bridge these mass gaps:
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Figure 1. Possible reaction paths bridging the mass numbers A = 5 and A = 8.

1. Reaction path 4He(2n,γ)6He(α,n)9Be(α,n)12C: Under representative conditions the
reaction path 4He(2n,γ)6He(α,n)9Be(α,n)12C can be neglected in known astrophys-
ical scenarios, because the fragile 6He is destroyed very effectively by photodis-
sociation 6He(γ,2n)4He [1–3]. The cross sections and reaction rates for the reac-
tion 4He(2n,γ)6He and the reverse photodissociation have been calculated using an
α+n+n approach [2].

2. Reaction path 4He(αn,γ)9Be(α,n)12C: This reaction path is dominant in the so-
called alpha-rich freeze-out occurring in type II supernovae [1,4–7]. The cross sec-
tions and the reaction rates for 4He(αn,γ)9Be and the reverse photodissociation have
been calculated in a semimicroscopic model and compared with the experimental
data [7].

3. Triple-alpha process 4He(2α,γ)12C: The bulk of the carbon in the universe is pro-
duced through this process in the helium-burning phase of red giant stars. The
reaction rate for the triple-alpha process has been determined recently in a micro-
scopic 12-nucleon model [8–10].

In the following section we will present the calculation of the reaction rate for the
triple-alpha process in the microscopic 12-nucleon model 4He(2α,γ)12C. Sect. 3 will be
devoted to variations of the nucleon-nucleon (N-N) force and its consequences for the
stellar production of carbon and oxygen in the universe. In Sect. 4 we discuss the con-
straints for anthropically allowed parameters of elementary particle physics like the light
quark masses or the Higgs vacuum expectation value and mass parameter. In the last
section a short summary is given.
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2. REACTION RATE FOR THE TRIPLE-ALPHA PROCESS

The formation of 12C in hydrogen burning is blocked by the absence of stable elements
at mass numbers A = 5 and A = 8. Öpik [11] and Salpeter [12] pointed out that the
lifetime of 8Be is long enough, so that the α+α ⇀↽ 8Be reaction can produce macroscopic
amounts of equilibrium 8Be in stars. Then, the unstable 8Be could capture an additional
α particle to produce stable 12C. However, this so-called triple-alpha reaction has very
low rate since the density of 8Be in the stellar plasma is very low, because of its short
lifetime of 10−16 s.

Hoyle (cited in [13]) argued that the triple-alpha reaction cannot produce enough carbon
in a non-resonant way in order to explain the measured abundance in the Universe,
therefore it must proceed through a hypothetical resonance of 12C, thus strongly enhancing
the cross section. Hoyle suggested that this resonance is a Jπ = 0+ state at about
ε = 0.4MeV (throughout this paper ε denotes resonance energy in the center-of-mass
frame relative to the three-alpha threshold, while Γ denotes the full width). Subsequent
experiments indeed found a 0+ resonance in 12C in the predicted energy region by studies
of the reaction 14N(d,α)12C [13,14] and the β−-decay of 12B [15]. It is the second 0+ state
(0+

2 ) in 12C. Its modern parameters, ε = 0.3796MeV and Γ = 8.5× 10−6 MeV [16], agree
well with the old theoretical prediction.

2.1. Microscopic 12-body model

The astrophysical models that determine the amount of carbon and oxygen produced
in red giant stars need some nuclear properties of 12C as input parameters. Namely,
the position and width of the 0+

2 resonance, which almost solely determines the triple-
alpha reaction rate, and the radiative decay width for the 0+

2 → 2+
1 transition in 12C. We

calculated these quantities in a microscopic 12-body model [8–10].
In the microscopic cluster model it is assumed that the wave functions of certain nuclei,

like 12C, contain, with large weight, components which describe the given nucleus as a
compound of 2-3 clusters. By assuming rather simple structures for the cluster internal
states, the relative motions between the clusters, which are the most important degrees
of freedom, can be treated rigorously. The strong binding of the free alpha particle 4He
makes it natural that the low-lying states of 12C have 3α-structures [17]. Therefore, our
cluster-model wave function for 12C looks like

Ψ
12C =

∑

l1,l2

A
{

ΦαΦαΦαχ
α(αα)
[l1l2]L(ρ1, ρ2)

}

. (1)

Here A is the intercluster antisymmetrizer, the Φα cluster internal states are transla-
tionally invariant 0s harmonic-oscillator shell-model states with zero total spin, the ρ

vectors are the intercluster Jacobi coordinates, l1 and l2 are the angular momenta of the
two relative motions, L is the total orbital angular momentum and [. . .] denotes angular
momentum coupling. The total spin and parity of 12C are J = L and π = (−1)l1+l2 ,
respectively.

We performed calculations using the Minnesota (MN) and modified Hasegawa-Nagagta
(MHN) N-N forces. These two forces give the best simultaneous description of the 8Be
ground state and the 0+

2 state of 12C [10], in agreement with the experience gained in the
cluster-model description of the structure and reactions of various light nuclei [18]. The
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MN-force is given by [19,20]

Vij(r) =
(

V1(r) +
1

2
(1 + P σ

ij)V2(r) +
1

2
(1 − P σ

ij)V3(r)
)(

1

2
u +

1

2
(2 − u)P r

ij

)

+V Coul.
ij (r),(2)

where P r and P σ are the space- and spin-exchange operators, respectively, u is the ex-
change mixture parameter, r = |rj − ri|, and V Coul.

ij is the Coulomb force between the two
nucleons. The MHN force is given by [21]

Vij(r) =
3
∑

k=1

(

Wk + MkP
r
ij + BkP

σ
ij + HkP

τ
ij

)

Vk(r) + V Coul.
ij (r). (3)

The parameter Wk is the Wigner parameter, P r
ij, P σ

ij , and P τ
ij are the space-, spin-, and

isospin-exchange operators (Majorana-, Bartlett-, and Heisenberg-operators), and Mk,
Bk, and Hk are the corresponding exchange mixture parameters.

The spatial parts of the MN- and MHN-force have Gaussian forms

Vk(r) = V0k exp

[

−
(

r

r0k

)2
]

, k = 1, 2, 3, (4)

where V0k and r0k are the strength and range parameters of the potentials, respectively.

2.2. Triple-alpha reaction rate

The resonant reaction rate for the triple-alpha process proceeding via the ground state
of 8Be and the 0+

2 resonance in 12C is given approximately by [22]

r3α ≈ 3
3

2 N3
α

(

2πh̄2

MαkBT

)3
Γγ

h̄
exp

(

−
ε

kBT

)

, (5)

where Mα and Nα are the mass and the number density of the alpha particle, while h̄ and
k are Planck’s and Boltzmann’s constant, respectively. The temperature of the stellar
plasma is given by T .

We calculated the resonance energy ε of the 0+
2 state in 12C, relative to the 3α-threshold,

and the 0+
2 → 2+

1 radiative (E2) width Γγ . The 0+
2 state is situated above the 3α-threshold,

therefore for a rigorous description one has to use an approach which can describe three-
body resonances correctly. We choose the complex scaling method [23] that has already
been used in a variety of other nuclear physics problems, see e.g. [17,24,25].

As a first step of our calculations, we fine tune each N-N force (by slightly changing their
exchange-mixture parameters) to fix ε in Eq. (5) at its experimental value. The other
important quantity that needs to be calculated is the radiative width of the 0+

2 state,
coming from the electric dipole (E2) decay into the 2+

1 state of 12C. This calculation
involves the evaluation of the E2 operator between the initial 0+

2 three-body scattering
state and the final 2+

1 bound state [26]. The proper three-body scattering-state treatment
of the 0+

2 initial state is not feasible in our approach for the time being, therefore we use
a bound-state approximation to it. This is an excellent approximation for the calculation
of Γγ because the total width of the 0+

2 state is very small (8.5 eV [16]). The value of Γγ

is rather sensitive to the energy difference between the 0+
2 and 2+

1 states, so we have to
make sure that the experimental energy difference is correctly reproduced.
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2.3. Stellar-model calculations

The composition of the interstellar material (ISM) is a mixture of ejecta from stars
with different masses. At present it is not clear which type of stars contribute most of the
12C or 16O to the ISM. Therefore, we performed stellar model calculations for a typical
massive, intermediate-mass and low-mass star with masses 20, 5, and 1.3M⊙, respectively,
including the calculated triple-alpha reaction rates.

We used a modern stellar evolution code, which contains the most recent input physics
[27]. Up-to-date solar models can be calculated with this program [28] as well as the
evolution of low-mass stars can be followed through the thermal-pulse phase of stars at the
asymptotic giant branch [29]. The nuclear network is designed preferentially to calculate
the H- and He-burning phases in low-mass stars. Additionally, all basic reactions of C-
and O-burning are included, which may destroy the previously produced C and O in
massive and intermediate-mass stars.

Here, the stars are followed from the onset of H-burning until the third thermal pulse
on the AGB, or until the core temperature reaches 109 K in the case of the 20M⊙ star
(the nuclear network is not sufficient to go beyond this phase).

Large portions of the initial mass of a star are returned to the ISM through stellar winds.
Unfortunately, basically due to the simple convection model used in stellar modeling, the
composition of the wind cannot yet be determined very accurately from stellar evolution
theory. However, it is beyond the scope of the present investigations to determine how
and when the material is returned to the ISM. Instead we examine how much C and O is
produced altogether.

For the 1.3M⊙ star, which loses its envelope basically during the thermal-pulse phase,
the maximum C and O abundances in the He-burning region have been extracted. Al-
though the efficiency of the dredge-up of heavy elements to the surface is only badly
known, it is independent of the nuclear physics, and hence should be similar in all models
independent of the triple-alpha rate. By taking the maximum abundances in this region,
we have a measure of how strongly the enrichment of the stellar envelope by C or O is
altered by modifying the triple-alpha rate.

In the 5 and 20M⊙ stars further fusion reactions like C- and O-burning take place. The
dredge-up process of metal-enriched material under these circumstances is more compli-
cated and more uncertain than in the 1.3M⊙ star. The 20M⊙ star finally even explodes
in a supernova. Therefore, for the 5 and 20M⊙ stars the total amount of C and O in the
stellar interior is evaluated.

3. VARIATIONS OF THE NUCLEON-NUCLEON FORCE

In this section we slightly vary the strength and range parameters of the MN- and
MHN-potentials and calculate the modified resonance energies ε and gamma widths Γγ

of the 0+
2 state in 12C. With these values of ε and Γγ we recalculate the triple-alpha

reaction rate r3α of Eq. (5). We find that the value of Γγ is very little changed by the
small variations of the N-N interactions, leading to negligible changes in r3α. Thus, in
the stellar model calculations we can fix Γγ to its experimental value in all cases. The
resonance energy ε, however, is rather sensitive to variations in the N-N force, leading to
large changes in the triple-alpha rate r3α. By making the N-N force weaker, the resonance
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energy ε moves higher and the reaction rate r3α decreases exponentially as can be seen
from Eq. (5). The opposite is true for a stronger N-N force.

We have done a series of tests in order to make sure that the main assumptions of
our calculations remain valid while the interactions are varied. Here we mention only
three main points. We checked that the use of Eq. (5) is justified for all the different
resonance energies as well as temperatures occurring in our calculations. In all cases the
triple-alpha reaction is dominated by the sequential process through the 8Be ground state
and the 0+

2 state of 12C. The amount of variations in the strength of the Coulomb and
strong interaction are small enough to keep the experimental 8Be ground state and the 0+

2

state of 12C from becoming a broad state or a bound state. We also estimated the non-
resonant contribution [30], without the 0+

2 resonance in 12C, to the triple-alpha rate and
found that this contribution is about 7-13 orders of magnitude smaller than the resonant
contribution in the stellar temperature range T ≈ (0.8− 3)× 108 K arising in our stellar-
model calculations. Furthermore, the contribution of the next higher-energy 0+ resonance
(at about 2.7MeV above the three-alpha threshold [22]) to the triple-alpha rate is smaller
by about 40 orders of magnitude in the considered temperature range. Also, in the above
temperature range the reaction will not proceed through the low-energy wing of the 8Be
resonance [30].

Some of the carbon, produced in the triple-alpha process, is further synthesized in the
12C(α, γ)16O and 16O(α, γ)20Ne reactions. The 16O(α, γ)20Ne reaction is nonresonant, so
variations in the strengths of the strong force can have only small effects on its reaction
rate. The 12C(α, γ)16O process may look more dangerous because its cross section is
strongly affected by subthreshold states in the 16O nucleus [22]. However, if the N-N force
is made weaker, then the subthreshold states become less bound, thereby enhancing the
12C(α, γ)16O cross section. Therefore, in the case of a weaker force the small C/O ratio is
further decreased. An analogous reasoning holds for a stronger force. Thus, without doing
any calculation for the 12C(α, γ)16O and 16O(α, γ)20Ne reactions with the modified forces,
we can conclude that their effect would strengthen our hypothesis regarding carbon and
oxygen production.

There may be other windows for different values of the fundamental interactions in
which an appreciable amount of carbon and oxygen could be produced. The window
that seems to be closest to the values realized in our universe is the creation of oxygen
and carbon in the big bang [31]. This possibility is prevented in our universe by the
existence of the stability gaps at mass numbers A = 5 and A = 8. In order to make 5He
or 5Li as well as 8Be become bound, we calculated that the strong forces would have to
be increased by about 10%, a value that is about a factor 20 larger than the maximal
variation investigated in this work.

We multiply now in the MN- and MHN-potentials independently the strength param-
eters V0k as well as the range parameters r0k for all repulsive and attractive terms V0k

in Eq. (4) by the same factor p. This factor was set between 0.994 and 1.006 for the
strength parameters and 0.997 and 1.003 for the range parameters of the MN and MHN
potentials. With these values for the factor p we recalculate the resonance energies and
the triple-alpha reaction rates. For each of these new reaction rates we then perform again
the corresponding stellar model calculations.

The resulting changes in the C and O abundances are shown (Fig. 2) with respect to
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Figure 2. The change of the carbon (△) and oxygen (3) mass abundances (X) through
variations of the strength (lower ordinate) and range parameters (upper ordinate) of the
nucleon-nucleon potentials MN and MHN. The abundance changes are shown in panels a,
b, and c for stars with masses of 20, 5, and 1.3M⊙, respectively, in units of the standard
values Xstand. The dashed curves are drawn to guide the eye.

the case, where the standard value of the resonance energy has been used (i.e., with no
variations of the strength or range parameters of the MN- and MHN-potentials). Because
each shift in the resonance energy can be identified with a variation in the strength or
range parameter of the corresponding N-N force, we scaled the lower and upper ordinate
with variations in these quantities, respectively.

We conclude that a change of more than about 0.5% in the strength parameters or
0.2-0.3% in the range parameters of the MHN- or MN-potential would destroy either
nearly all C or all O in every star. This implies that irrespective of stellar evolution the
contribution of each star to the abundance of C or O in the ISM would be negligible. This
corresponds to a fine tuning that is about two orders of magnitude better than obtained
from the constraints of a bound deuteron [32–34] or from the non-existence of a bound
diproton or dineutron [35].

In Fig. 2 one can see that the size of the resulting change in the abundances with the
variation of the range parameters r0k is about twice the size of the change coming from
the variation of the strength parameters V0k. This can be understood quite simply, be-
cause we only considered small variations (≈ 0.5%) of the strength and range parameters,
respectively. In this case the changes in the strength and range parameters in Eq. (4)

V ′

0k = (1 ± δV0k)V0k,

r′0k = (1 ± δr0k)r0k (6)
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lead to a change in the spatial parts in the potential for δr0k ≪ 1

V ′

k(r) = V ′

0k exp

[

−
(

r

r0k

)2
]

= (1 ± δV0k)Vk(r),

V ′

k(r) = V0k exp



−

(

r

r′0k

)2


 ≈ V0k exp

[

−(1 ∓ 2δr0k)
(

r

r0k

)2
]

≈ (1 ± 2δr0k)Vk(r),(7)

where in the second line we used a mean potential range parameter r ≈ r0k in the first-
order correction term. Therefore, in the above approximation a change in the range
parameter r0k corresponds to a twice as large change, δV0k ≈ +2δr0k, in the strength
parameter.

4. ANTRHOPICALLY ALLOWED QUARK MASSES AND HIGGS PARA-

METERS

In this section we investigate the constraints on the anthropically allowed quark masses
following largely the discussion already given in Ref. [36].

The one-boson exchange potential (OBEP) for the N-N force can be written as a sum
of Yukawa terms

VOBEP(r) = −f 2
π

exp(−mπr)

r
− f 2

σ

exp(−mσr)

r
+ f 2

ω

exp(−mωr)

r
, (8)

where the f’s and m’s are the coupling constants and masses of the π, σ and ω mesons,
respectively. The OBEP-potential has a long-range tail from one-pion exchange, an at-
tractive minimum due to the exchange of the hypothetical σ-meson and a repulsive core
due to the ω-meson. In the following we will only consider the long-range part due to the
pion, the one-pion exchange potential (OPEP),

VOPEP(r) = −f 2
π

exp(−mπr)

r
. (9)

For small changes of the pion mass,

m′

π = mπ ± δmπ, (10)

we obtain

V ′

OPEP(r) = −f 2
π

exp(−m′

πr)

r
≈ −f 2

π

exp[−(mπ ± δmπ)r)]

r
≈

(

1 ∓
δmπ

mπ

)

VOPEP(r),(11)

where in the second line we used a mean potential range given by the pion mass r ≈ 1/mπ

in the first-order correction term.
The range defined by the inverse pion-mass is therefore also limited to a ±0.5% window.

Here we assumed that the sensitivity of the carbon production to the potential strength
is similar in the OPEP and MN/MHN cases, respectively.

As long as the up- and down-quark masses are small compared to the QCD scale, the

mass of the pion is well approximated by mπ ∝
√

fπ(mu + md) [33,34]. Therefore, the
sum of the up- and down-quark masses mu+d ≡ mu + md scales with the pion mass
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mπ as 0.5δmu+d ≈ δmπ. Thus the anthropically allowed value of the sum of the up-
and down-quark masses are fine tuned to approximately 1%. Using the quark masses
mu = (4.88 ± 0.57)MeV and md = (9.81 ± 0.65)MeV the anthropically allowed sum of
the up- and down-quark masses mu+d is constrained to within about 0.15MeV. This is
consistent with the result of Ref. [36] where a value in the order of 0.05MeV is given.

Constraints can also be obtained for the difference of the down- and up-quark masses,
md−u ≡ md − mu. We do not consider possible variations of the electron mass as in
Ref. [36]. The constraint for the upper limit of δmd−u follows from the restriction that
the pp-fusion

p + p → d + e+ + ν (12)

is exothermic. This gives an allowed range of δmd−u < 0.42MeV. The constraint for the
lower limit of δmd−u follows from the stability of the hydrogen atom, i.e. that the proton
capture of an electron

p + e− → n + ν (13)

is endothermic. This gives an allowed range of δmd−u > −0.782MeV. The stability of
the proton and deuteron give also constraints for the lower and upper limit of δmd−u.
However, these constraints are less stringent than the ones obtained from the ones given
above [36].

The resulting anthropically allowed strengths of the up- and down-quark masses are
given by the central region of Fig. 3. As can be seen from this figure the anthropic fine
tuning of the up- and down-quark masses is less than a few percent. The band around
δmd/md = −0.5δmu/md determined by the production of carbon and oxygen is about
four times narrower than the band around δmd/md = +0.5δmu/mu. That means that the
constraints of carbon or oxygen production give a stronger fine tuning than the constraints
determined from the reactions of Eqs. (12) and (13). If additional joint constraints that
unification imposes on the fermion masses like the ratio md/me are taken into account [37],
three-dimensional constraining plots for the up-quark, down-quark and electron masses
can be derived.

Similar considerations [33,34,38] can be carried out for the Higgs vacuum expectation

value v ≈
√

−µ2/λ ∝ µ and the Higgs mass parameter µ. Since the up- and down-quark
masses scale simply with the Higgs vacuum expectation value, the Higgs vacuum expecta-
tion value v and Higgs mass parameter µ are also fine tuned by anthropic considerations
to approximately ±1%.

5. SUMMARY

In this work we have shown that the strength or range of the strong force is fine tuned
to ±0.5% by the production of carbon or oxygen and therefore also carbon-based life.
This leads to a fine tuning of the sum of the light quark masses as well as the Higgs
vacuum expectation value and mass parameter to about ±1%.

One of the most fascinating aspects resulting from this is that life, stars, nuclei and
elementary particles seem to be closely interwoven in our universe through this extreme
fine tuning. It is not clear if the values of the fundamental parameters corresponding to
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Figure 3. The central region shows the anthropically allowed values of variations of the
up-quark mass δmu/mu and variations of the down-quark mass δmd/md. The follow-
ing constraints are determined by the straight lines in the figure: (i) the pp-fusion in
Eq. (12) is exothermic, (ii) the proton capture of an electron in Eq. (13) is endothermic,
(iii) the carbon production is not suppressed, and (iv) the oxygen is production is not
suppressed. These four constraints determine the upper and lower bounds of the bands
around δmd/md = +0.5δmu/mu and δmd/md = −0.5δmu/mu, respectively.

this anthropic fine tuning will be calculable by a future Final Theory [39] or if some of
the parameters of such a Final Theory will have to be chosen from a large or continuous
ensemble [36]. In any case it will be one of the challenges for a possible Final Theory to
explain the anthropic fine tuning as described in this paper.
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